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Abstract. We calculated the vibrational densities of states for three-dimensional Pencose tiling,
Anomalous behaviour at low fraquencies is observed. Two ctossover frequencies &, and
exist. The first can be attributed to crossoveér from surface phonon excitations to bulk phonon
excitations, while the second is explained as crossover from phonon excitations to fracton-like
excitations, The phonons follow the scaling law w¥~!, where ¢ is the Euclidean dirfiension and
equals 3 and 2 for the bulk and the surface phonons, respectively. The fracton-like excitations
which Have a non-extended character follow the scaling law w®~! where d; is the fracton-like
dimension and is shown to equal 3 for the preésent case.

1. Introduction

The experimental discovery by Schechtman et al {1} of & metallic solid phase of Al~
Mn alloy with icosahedral symmetry has considerably revived interest in quasi-crystals.
One-dimensional (10) Fibonacci quasi<lattices, as 2 1D version of quasi-crystals, have been
studied extensively [2-7]. The spectral structure is shown to be a Cantor-like set, with a
peculiar self-similarity and miultifractal behaviour in their wavefunctions [7]. Choy [8] and
Odagaki and Nguyen [9] have investigated the spectral properties of two-dimensional (2D)
Penrose lattices. The vibrational densities of states for various 2D quasi-periodic lattices
were calculated by Liu and Tian [10, 11]. Similar work for three-dimensional (3D) quasi-
crystalg was done by Los and Jansen [12] and Los et af [13, 14], as well as by Hafner and
Krajci [185, 16).

Non-periodicity and self-similarity are the most remarkable properties of quasi-crystals,
For example, the primitive icosahedral lattice is invariant under a scaling by 7° (r =
L5+ 1)) [17,18]. Therefore in the sense of the self-similarity of quasi-crystals we can
regard them as fractals within some physical lower and upper cut-offs. In fractal lattices,
it is found that there is a special kind of vibrational excitation, a fracton [19], and the low-
frequency vibrational density pg(i) of states has two scaling regimes, namely the phonon
regitme and the fracton regime, i.€. one has the following relations:

d-1 W < W,
or
o> W

©
polw) ~ {m‘L_l
w, is the crassover frequency from phonon to fracton behaviour of the hetwork and d is
the spectral {fracton) dimension [19-24]. For quasi-periodic lattices, some work khas been
done on théir fractal features. Kohmoto and Banavar [2] obtained the fractal diinension
of the Fibonacci lattice which equals its Euclidean dimension (i.e. oné), using the mass—
volume relationship. In the calculation of vibrational spectra of 2D quasi-trystals, it is found
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that these quasi-crystals have fractal dimensions which are also equal to their Buclidean
dimensions and that crossovers from phonon to fracton-like excitations exist in the low-
frequency region [10, 11].

The aims of this paper are twofold. Firstly we intend to extend our previous study
[10,11] to a 3D Penrose lattice; we expect fracton-like excitations to exist also in 3D quasi-
crystals. Secondly we shall show the character of the vibrational excitations in 30 quasi-
crystals.

2. Calculation procedures and structure construction

We utilize the widely used recursion method of Haydock er e [25,26] and Nex [27] which
is an efficient technique for obtaining the vibrational spectra of an aperiodic system.
Following the Born model, the potential energy of the lattice is expressed as

NN
V=—(d-—ﬁ)2l(u= w) syl + 1B Y I — M

where w, is the small displacement of the ith site about its equilibrium position v;, ry;
is the unit vector from site i to site j, ¢ is the bond-stretching force constant and 8 is
the bond-bending force constant; the summation runs over all the nearest neighbours. The
vector nature of the elastic force is included naturally in this equation. When & is chosen
to equal 8, the system considered becomes isotropic.

The local vibrational density of states [23] can be given as

pL{w) = «Quw/r) Im{u;|1/(w? — D)|u;) = —Qeo/7) Im{; |G u;) (2)

where G = 1/{w? — D) is the Green function, D is the dynanmical matrix and ju;} is the
displacement vector of site {. The global density of states following Choy [8] and Peng and
Tian [23] takes the form :

pew) = —(2w/m) Im (0IG|0) 3

where |0} 1s the initial vector whose elements are uncorrelated variables chosen from a
Gaussian distribution with mean zero and covariance unity. '

There are several methods of constructing Penrose lattices: the projection method
[28,29], the section method [30,31] and the general dual method [32]. In this paper we
shall use the projection method.

The 3D Penrose tiling can be obtained by projecting a six- dlmensmnal (6D) regular lattice
onto a 3D plane. The 6D space in which the lattice is embedded can be decomposed into
two mutually orthogonal 3D subspaces Vs = (VE, V7). The basis in Vg can be chosen as

a, =5(24,0,d,2d,0,d)
a; = b(2d coso, 2d sing, d, Zd.cos(2¢), 2d sin(2¢), d)

= b(2d cos(2¢), 2d 5in(2¢), d, 2d cos(4¢), 2d sin(4¢), &)
aa = b(2d cos(3¢), 24 sin(3¢), 4, 2d cos ¢, 2d sin ¢, d)
as = b(2d cos(d¢), 2d sin(4¢), d, 2d cos(3¢), 2d sin(3¢), d)
as =(0,0,1,0,0,—1)
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where = +/2/2, d = +/5/5 and ¢ = %zr. The first three components of these vectors are
in the normal space Vg, and the last three in the internal space V), The acceptance volume
(the projection of the 4D unit cell onto V) corresponds to a triacontabhedron.

In our numerical study, the cluster contain 11965 sites. All sites are occupied by the
same atoms with mass unity and the bond lengths are all taken to be equal to unity. By
changing the force constants & and § we calculate the corresponding global densities of
states and local densities of states for sites V, (I = 4,5,6,7,8,9,10,12), with ! denoting its
coordination number. '

3. Spectrum analysis

Figure 1 shows the global density pg{ew) of states. Figures 2(az)-2(h) show the local density
of states for eight different kinds of site: Vj3—Va, respectively, Comparing figure 1 with
figure 2, we find that the different peaks exhibited in the global density of states are favoured
by the special local configurations. Moreover, the larger the coordination number, the higher
is the frequency of the made that it favours. This result agrees with the observations of Liun
and Tian [10] for an octagonal lattice.

Figure 1. Global densities of states with constants
o= ﬁ =1

The character of the eigenstates is described by the spatial distribution of the vibrational
amplitude. '

(a) If all sites in the lattice vibrate with the same amplitude in the vicinity of their
equilibrium position and for each site the vibrational displacement i; = ugexp(iowr), then
such an eigenstate i called the extended state,

(b} If the vibrational displacement & = wu(r)exp(iewt), and the amplitude decays
exponentially from the centre site r = 0, u(r) ~ exp(—r/t) with localized length £,
this vibrational state is localized, and with size £.

(c) If the above two conditions cannot be satisfied, the spatial distribution of amplitudes
is in the character of a larger fluctuation having a maximum at a site and a series of
subsidiary maxima at other sites which do not decay to zero; this eigenstate is called the
‘critical’ state or ‘intermediate’ state [2].

As we know, the local density of states is proportional to the square of the amplitude
of the site [26,27]; so we can obtain some information about the vibrational modes in
the quasi-crystal from the calculation of the local densty of states. Figure 3 shows the
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local integrated density of (w) of states for eight kinds of site, namely V|2—V,. Analysis
indicates that three kinds of typical eigenstate coexist in the 3D Penrose lattice. Extended
states appear at low frequencies; all the other specific modes should be critical except the
higher-frequenc¢y modes wyp and w)o, which are evidently localized. For example, the local
density of states for site Vyz (figure 3(a)) produces a sharp jump at wy;. The mode has a
muchi larger amiplitude at this site and it significantly décreases at its nearest ngighbours Vs
(figure 3(F)) and attenuates to zerd at its second-nearest neighbours Vi (figure 3(d)).

We can make an approximate calculation for w2 under the isotropic model. When
o = B, equation (1) gives the isotropic potential

NN
vl er!u,- —uy? &
b

and the vector problem becomes a simple scalar problem; the vector nhotation for u can
be dropped. With {uq) representing the displacement of Via, huy) (i = 1,2,...,12) the
displacements of its 12 nearest neighbours and [Uy) (i = 1,...,12;j = 1,...,5) the
displacement of its second-nearest neighbours, we have

2 oy = Zauuo) le1)). 3

8;2

Suppose that |ug) = u,) exp(iwt); then

Alug) = 12lu) — Z lus} (6)
where A = mw?®/a. For the 12 nearest neighbours, we obtain

Ajuz} = 6lus) — Juo) — Z Ui 7
Subtracting 6{x;) from both sides of equation (7}, then we have

. _
(A = 6)[u;) = —ao) — D |Usp). , ®)
i=1

Substituting this into equation (7) and extracting the [u;), we obtain a relation between |ug)
and |Uj):

A(A — 6)|ug} = 12(A — 6)juo) + 12luc} + ) IUij). (9}
L

As mode wyp is highly localized, |U;;) is much smaller than |uo); ignoring |U;), we have
approximately

A(A —6) = 12(A — 6) + 12. (10)

The equation gives two roots; the reasonable root is A = 13.58, which gives w = 3.69 for
m =« =1 in good agreement with our numerical result wyy = 3.7,
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Figure 4 shows the global vibrational densities of states for the cluster with different
force constant ratios, ie. /8 = 1, 3, 10 and 50. To emphasize the low-frequency features,
we adopt a logarithmic coordinate system; the horizontal axis is the logarithm of the angular
frequency of vibration, and the vertical axis is the logarithm of the global vibrational
densities of states. We observe the same crossover as that noticed by Liu and Tian [10, 11]
in 2D quasi-crystals; in this figure, it is lablled .. In a frequency regime both above and
below w, the vibrational densities of states follow a power law pglaw) & w?. It is certain
that below w, the vibrational densities of states are aitributed to phonon excitations while
above w, they are attributed to fracton-like excitations in terms of the conciusion of Liu
and Tian (10, 11]. To check this, we amplify the low-frequency part of figure 2 in figure 5.
Obviously, the densities remain the same, independent of sites below w, but vary with sites
above w.. This suggests that, below w,, vibrational excitations are phonons with extended
states while, above «., they are fracton-like excitations with intermediate vibrational states
[10,111, following the scaling law pglw) o w®™! with dy = 3. As discussed in the
introduction, quasi-crystals can be regarded as fractals with a fractal dimension equal to
the Euclidean dimension. Self-similarity covers the whole scale. When the wavelength
is larger than the scale of the whole structure, i.e. the vibrational frequency is lower than
the corresponding value w,, quasi-crystals are regarded as homogeneous and the vibrational
elementary excitation is a phonon but, when the wavelength is smaller than the scale, i.e.
the frequency is larger than wc, quasi-crystals appear to be a fractal structure, and the
vibrational excitation is fracton like. So the crossover from phonon excitations to fracton-
like excitations appears.

In addition, it can be observed from figure 4 that, when /8 is increasing, i.e. when
the model gradually tends to the anisotropic model, the spectrum above w, gradually
deviates from a power law, Fer the isotropic model, the interaction between atoms depends
only on the magnitude of their relative displacements and has nothing to do with their
direction. When a scale transformation is performed on the guasi-lattice, qualitatively
the dynamic equation can be renormalized; thus the spectrum above w, follows a power
law. However, for the anisotropic model, the dynamic equation cannot be renormalized,
resulting in a deviation from the power law for the spectra above @.. This shows that,
when @ > we, pg{w) « w®™! is relevant to the scale feature of the inner interaction in
the quasi-lattice and is an intrinsic character of quasi-crystals. The fracton-like behaviour
corresponding to this regime is different from phonons below w, which are only of
homogeneous structure.

This statement is confirmed by the fractal dimension calculation 4y of the 30 Penrose
lattice using a mass—volume scaling. The result is shown in figure 6, which gives df >~ 3
as expected. For d; = 2di/d, [12], we obtain the random-walk dimension d,, = 2. For
(r?) ~ 12/ = ¢, there will be no anomalous diffusion in this lattice.

The existence of another crossover frequency w in the extremely low-frequency region
is surprising. Below w, the scaling law yields pg(w) & w?™! with d = 2, and the states
are extended. As the spectral dimension is equal to Euclidean dimension, this type of state
below w, should correspond to 2D surface phonons. The effect of free boundaries might
unavoidably introduce some features near the spectra edge that are not genuine features
of the bulk. As the diameter of a finite spherical cluster is apparently smaller than its
circumference, the frequency e, is definitely located below .

We have presented the first investigation of vibrational excitations in a 3D Penrose
lattice, Qur calculaitons show the low-frequency part of the spectrum follows an w? law
which is in good agreement with recent investigations of vibrational properties in 3D quasi-
crystals [12,15,16]. We give a detailed discussion of the low-frequency part, suggesting
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Figure 4. The vibratonal densities of states for 30 Penrose tiling with the following constants:
Wou==L{Ea=3 =1L {la=10,8=1;(d) a=>50) 8 =1 The crossovers are
indicated.

the existence of the crossover from phonon to fracton-tike excitations; probably the pseudo-
gap obtained by Los and Janssen is this crossover that we observed. The well defined
propagating excitations (phonons) observed by Hafner and Krajei in their investigation of
the excitations in rational approximants to quasi-crystals [15] are the extended phonons
that we found below «., and high-frequency localized modes [16] are also obtained in our
calculation.

4. Conclusions

The vibrational densities of states for a 3D Penrose tiling with various force constants
are calculated numerically. It is found that there exist two crossover frequencies w, and
.. The first can be attributed to crossover from surface phonon excitations to bulk phonon
excitations and the second is explained as a crossover from phonon excitations to fracton-like
excitations. The phonons follow the scaling law w97 where d is the Euclidean dimensian
equal to 3 and 2 for the bulk and the surface phonons, respectively. The speciral features in
the fracton-like excitation frequency regime depend on the force constants & and 8; when
a/B = 1 or @/B is not very large, the spectrum satisfies a scaling law pg{w) x w*~!
with d, = 3 in the present particular case. Compared with phonon excitations, fracton-like
excitations are non-extended. In the high-frequency regime, some specific vibrational modes
are exhibited; they favour different kinds of local configuration,
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8 7 7 Figure 6. Log-log plot of the moss-radius diagram.
‘This shows that the fractal dimension of the 3p Penrose
InR tiling is 3.
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