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Abstract. We dculated the vibrational densities of states for he-dimensional Pentose tiling. 
Anomalous behaviour at low frequencies is observed. WO cfossover frequencies U, and o, 
exist. The first can be attributed to cmssover from surface phonon excitations to bulk phonon 
excitations. while the second is explained as crosso~er f" phonon excitations to Fracton-like 
excitations. The phonons folloW the scaling law d-', where d is the Euclidean dimension and 
equals 3 and 2 for the bulk and the surface phonons, res@ctively. The fracton-like excitations 
which have a nonextended character follow the scaling law &-' where d. is the hcton-like 
dimension and is shown to equal 3 for the present case. 

1. Introduction 

The experimental discovery by Schechtman et hl [I] of tl metallic Nolid phage of Al- 
Mn alloy with icosahedral symmetry has considerably revived interest in quai-crystals. 
One-dimensional (ID) Fibonacci quasblattices, as A I D  version of quasi-crystals, have been 
studied extensively [2-71. The spectral structure is shown to be a Cantor-like set, with a 
peculiar self-similarity and nillltifractal behaviour in their wavefunctions [7]. Choy [8] and 
Odagaki and Nguyen [9] have investigated the spectral properties of two-dimensional (2D) 
Penrose lattices. The vibrational densities of states for vai'ious ZD quasi-periodic lattices 
were calculated by Liu and han  [lo, 111. Similar work for three-dimensional (3D) quasi- 
crystals was done by Los and Jansen LIZ] and Los et al [13,14], as well as by Hafner and 
Krajci [15, 161. 

Non-periodicity and self-similarity are the most remarkable properties of quasi-cryBtals. 
For example, the primitive icosahedral lattice is invariant under a scaling by 5 )  (I. = 
;(8+ 1)) [ 17,181. Therefore in the sense of the self-similarity of quasi-crystals vie can 
regard them as fractals within some physical lower and upper cut-offs. In fractal lattices, 
it is found that there is a special kind of vibrational excitation, a fracton 1191, and the low- 
frequency vibrational density &(U) of states has two scaling regimes, namely the phonon 
regime and the fracton regime, i.e. one has the following relations: 

wc is the crossover frepbency from phonon to fracton behaviour of the hetwork and ds is 
the spectral (fracton) dimension [ 19-24]. For quasi-periodic lattices, some work has been 
done on their fractal features. Kohmoto and Banavar [2] obtained the fractal dimension 
of the Fibonacci lattice which equals its Euclidean dimension (i.e. one), using the mass- 
v6lume relationship. In the calculation of vibrational spectra of 2D quasi-Crystals, it is found 
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that these quasi-crystals have fractal dimensions which are also equal to their Euclidean 
dimensions and that crossovers from phonon to fracton-like excitations exist in the low- 
frequency region [ 10, I I]. 

The aims of this paper are twofold. FirstIy we intend to extend our previous study 
[ I O ,  1 I] to a 3D Penrose lattice; we expect fracton-like excitations to exist also in 3D quasi- 
crystals. Secondly u'e shall show the character of the vibrational excitations in 3D quasi- 
crystals. 

2. Calculation procedures and structure construction 

We utilize the widely used recursion method of Haydock et a1 [25,26] and Nex [27] which 
is an efficient technique for obtaining the vibrational spectra of an aperiodic system. 

Following the Born model, the potential energy of the lattice is expressed as 

where U, is the small displacement of the ith site about its equilibrium position ri, rii 
is the unit  vector from site i to site j .  01 is the bond-stretching force constant and p is 
the bond-bending force constant; the summation runs over all the nearcst neighbours. The 
vector nature of the elastic force is included naturally in this equation. When 01 is chosen 
to equal j3, the system considered becomes isotropic. 

The local vibrational density of states [23] can be given as 

p&) = -(2w/7r) Im(uiIl/(w* - D)Iui) = -(Zw/a)Im(u;lGlui) (2) 

where G = 1/(w2 - D) is the Green function, D is the dynanmical matrix and / v i )  is the 
displacement vector of site i. Tbe global density of states following Choy [SI and Peng and 
Tian [23] takes the form 

- 
P G ( W )  = - (2w / r )  Im (OlclO) (3) 

where 10) is the initial vector whose elements are uncorrelated variables chosen from a 
Gaussian distribution with mean zero and covariance unity. 

There are several methods of constructing Penrose lattices: the projection method 
[28,29], the section method [30,31] and the general dual inethod [32]. In this paper we 
shall use the projection method. 

The 30 Penrose tiling can be obtained by projecting a six-dimensional (6D) regular lattice 
onto a 3D plane. The 6D space in which the lattice is embedded can be decomposed into 
two mutually orthogonal 3D'SubSpaceS VS = (VE,  VI). The basis in Vs can be chosen as 

a ,  = 6(2d, 0, d,  2d, 0.d) 

a2 = 6(2dcos@,2dsin@,d,2dcos(2@), 2dsin(2@),d) 

a3 = b(2dcos(2@), 2dsin(2@), d ,  Idcos(@), 2dsin(4@),d) 

a4 = 6(2dcos(3@). 2dsin(3@),d,2dcos~.2dsin@,d) 

as = 6(2dcos(4@), 2dsin(4@).d, 2dcos(3@), 2dsin(3@),d) 

a6 = (0, 0,  I ,  0, 0, -1)  



Vibrational properties of 3D Penrose tiling 955 

where b = &/2, d = 8 / 5  and 4 = $r, The first three components of these vectors are 
in the normal space V E ,  and the last three in the internal space 6. The acceptance volume 
(the projection of the 6D unit cell onto VI) corresponds to a triacontahedron. 

In our numerical study, the cluster contain 11 965 sites. All sites are occupied by the 
same atoms with mass unity and the bond lengths are all taken to be equal to unity. By 
changing the force constan& (Y and @ we calculate the corresponding global densities of 
states and local densities of states for sites V, ( I  = 4,5,6,7,8,9,10,12), with l denoting its 
coordination number. 

3. Speetrum analysis 

Figure I shows the global density &(o) of states. Figures 2(a)-2(h) show the local density 
of states for eight different kinds of site: Vl~-V4. respectively. Comparing figure 1 with 
figure 2, we find that the different peaks exhibited in the global density of states are favoured 
by the special local configurations. Moreover, the larger the coordination number, the higher 
is the frequency of the mode that it favours. This result agrees with the observations of Liu 
and Tian [IO] for an octagonal lattice. 

I I I I \  

0 2 1. Figure 1. Global densities of stales with constanls 
w a = J 9 = I .  

The character of the eigenstates is described by the spatial distribution of the vibrational 
amplitude. 

(a) If all sites in the lattice vibrate with the same amplitude in the vicinity of their 
equilibrium position and for each site the vibrational displacement U, = uoexp(iot), then 
such an eigenstate is called the extended state. 

(b) If the vibrational displacement U = u(r)exp(iwt), and the amplitude decays 
exponentially from the centre site r = 0, u(r) - exp(-r/() with localized length (, 
this vibrational state is localized, and with size t. 

(c) If the above two conditions cannot be satisfied, the spatial distribution of amplitudes 
is in the character of a larger fluctuation having a maximum at a site and a series of 
subsidiary maxima at other sites which do not decay to zero; this eigenstate is called the 
'critical' state or 'intermediate' state [Z]. 

As we know, the local density of states is proportional to the square of the amplitude 
of the site [26,27]; so we can obtain some information about the vibrational modes in 
the quasi-crystal from the calculation of the local densty of states. Figure 3 shows the 
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local integrated density &(w) of states for eight kinds of site, namely Vlz-V4. Analysis 
indicates that three kinds of typical eigenstate coexist in the 3D Penrose lattice. Extended 
states appear at low frequencies: all the other specific modes should be critical except the 
higher-frequency modes wIo  and wiz, which are evidently localized. For example, the local 
density of states for site VIZ (figure 3(a)) produces a sharp jump at 012. The mode has a 
much larger amplitude at this site and it significantly decreases at its nearest neighbours V6 

(figure 3(f)) and attenuates to zero at its second-nearest neighbours V, (figure 3(d)). 
We can make an approximate calculatio~i for 012 under the isotropic model. When 

a = f3, equation (1) gives the isotropic potential 

and the vector problem becomes a simple scalar problem; the vector hotation for U can 
be dropped. With Iuo) representing the displacement of VI,, I Q )  (i = 1,2,  . . . , 12) the 
displacements bf its 12 nearest neighbours and IUj,) (i 1 , .  . . , 12; j = I ,  . . . ,5 )  the 
displacement of its second-nearest neighbours, we have 

Suppose that luo) = Iu.) exp(iwt); then 

where A = mwa/a .  For the 12 nearest neighbours, we obtain 

j=l 

Subtracting 6/ui) from both sides of equation (7), then we have 

5 

( A  -6)lui) = -1llo) - IUjj). (8) 
j= l  

Substituting this into equation (7) and extracting the lai). we obtain a relation between lu0) 
and IUij): 

A ( A  - 611~0) = 12(A - 6)Iuo) + 121~0) + Cluij). (9) 

As mode WO is highly localized, IUij) is mhch smaller than 1~0); ignoring IUij), we have 
approximately 

i.i 

A ( A  - 6) = 12(A - 6) + 12. (10) 

The equation gives two roots: the reasonable root is A = 13.58, which gives w = 3.69 for 
m = a = 1 in good agreement with our numerical result 012 = 3.1. 
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Figure 4 shows the global vibrational densities of states for the cluster with different 
force constant ratios, i.e. [Y f p  = 1, 3, IO and 50. To emphasize the low-frequency features, 
we adopt a logarithmic coordinate system: the horizontal axis is the logarithm of the angular 
frequency of vibration, and the vertical axis is the logarithm of the global vibrational 
densities of states. We observe the same crossover as that noticed by Liu and Tian [IO, I I ]  
in ZD quasi-crystals; in this figure, it is lablled wc. In a frequency regime both above and 
below w, the vibrational densities of states follow a power law p&) a w z .  It is certain 
that below we the vibrational densities of states are attributed to phonon excitations while 
above wc they are attributed to fracton-like excitations in terms of the conclusion of Liu 
and Tian [lo, 1 I]. To check this, we amplify the low-frequency part of figure 2 in figure 5. 
Obviously, the densities remain the same, independent of sites below w, but vary with sites 
above wc. This suggests that, below wc, vibrational excitations are phonons with extended 
states while, above w,, they are fracton-like excitations with intermediate vibrational states 
[IO, 111, following the scaling law a wds-' with d, = 3. As discussed in the 
introduction, quasi-crystals can be regarded as fractals with a fractal dimension equal to 
the Euclidean dimension. Self-similarity covers the whole scale. When the wavelength 
is larger than the scale of the whole structure, i.e. the vibrational frequency is lower than 
the corresponding value w,, quasi-crystals are regarded as homogeneous and the vibrational 
elementary excitation is a phonon but, when the wavelength is smaller than the scale, i.e. 
the frequency is larger than wc, quasi-crystals appear to be a fractal structure, and the 
vibrational excitation is fracton like. So the crossover from phonon excitations to fracton- 
like excitations appears. 

In addition, it can be observed from figure 4 that, when u/p  is increasing, i.e. when 
the model gradually tends to the anisotropic model, the spectrum above wc gradually 
deviates from a power law. For the isotropic model, the interaction between atoms depends 
only on the magnitude of their relative displacements and has nothing to do with their 
direction. When a scale transformation is performed on the quasi-lattice, qualitatively 
the dynamic equation can be renormalized; thus the spectrum above w, follows a power 
law. However, for the anisotropic model, the dynamic equation cannot be renormalized, 
resulting in a deviation from the power law for the spectra above 0,. This shows that, 
when w > w,, PG(W) a is relevant to the scale feature of the inner interaction in 
the quasi-lattice and is an intrinsic character of quasi-crystals. The fracton-like behaviour 
corresponding to this regime is different from phonons below w, which are only of 
homogeneous structure. 

This statement is confirmed by the fractal dimension calculation df of the 3D Penrose 
lattice using a mass-volume scaling. The result is shown in figure 6, which gives df Y 3 
as expected. For d, = Z d f / d ,  [12], we obtain the random-walk dimension d, = 2. For 
( r Z )  N t2/dw = t ,  there will be no anomalous diffusion in this lattice. 

The existence of another crossover frequency w s  in the extremely low-frequency region 
is surprising. Below ws the scaling law yields ct cod-' with d = 2, and the states 
are extended. As the spectral dimension is equal to Euclidean dimension, this type of state 
below w, should correspond to 2D surface phonons. The effect of free boundaries might 
unavoidably introduce some features near the spectra edge that are not genuine features 
of the bulk. As the diameter of a finite spherical cluster is apparently smaller than its 
circumference, the frequency ws is definitely located below 0,. 

We have presented the first investigation of vibrational excitations in a 3D Penrose 
lattice, Our calculaitons show the low-frequency part of the spectrum follows an w2 law 
which is in good agreement with recent investigations of vibrational properties in  3D quasi- 
crystals [12, 15,161. We give a detailed discussion of the low-frequency part, suggesting 
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Figure 4. The vibrational densities of states for 3D Penrose tiling with the following conslants: 
(a )  U = .b = I :  (b)  U = 3. .b = I ;  (c )  U = 10. .b = 1: ( d )  U = 50, p = 1. The crossovers are 
indicated, 

the existence of the crossover from phonon to fracton-like excitations; probably the pseudo- 
gap obtained by Los and Janssen is this crossover that we observed. The well defined 
propagating excitations (phonons) observed by Hafner and Krajci in their investigation of 
the excitations in rational approximants to quasi-crystals [ 151 are the extended phonons 
that we found below U,, and high-frequency localized modes [I61 are also obtained in our 
calculation. 

4. Conclusions 

The vibrational densities of states for a 3D Penrose tiling with various force constants 
are calculated numerically. It is found that there exist two crossover frequencies U, and 
U,. The first can be attributed to crossover from surface phonon excitations to bulk phonon 
excitations and the second is explained as a crossover from phonon excitations to fracton-like 
excitations. The phonons follow the scaling law where d is the Euclidean dimension 
equal to 3 and 2 for the bulk and the surface phonons, respectively. The spectral features in 
the fracton-like excitation frequency regime depend on the force constants (Y and ,6; when 
a/@ = 1 or a/@ is not very large, the spectrum satisfies a scaling law pC;(w) cx c o d s - '  
with d, = 3 in the present particular case. Compared with phonon excitations, fracton-like 
excitations are non-extended. In the high-frequency regime, some specific vibrational modes 
are exhibited; they favour different kinds of local configuration. 
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I .  Figure 6. Log-log plot of the mass-radius d i a g m .  l 
This shows that the fmctal dimension of the 3D Penrose =a > tiling is 3. 
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